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Anytime-valid confidence sequences as a
resolution to the Bayesian/frequentist interval

debate

Alexander Ly∗ , Udo Boehm∗ and Peter Grünwald∗,†

Within the simple context of Xi
iid∼ N (θ, 1), Campbell and Gustafson (2023) eloquently

raised two issues concerning model-averaged credible intervals for θ based on

π(θ | yn) = π(θ | yn, M1)[1 − P (M0 | yn)] + δθ0(θ)P (M0 | yn), (1)

which mixes π(θ | yn, M1) with a point mass at θ0 weighted by

P (M0 | yn) = P (M0)
P (M0) + BF10(yn)[1 − P (M0)] . (2)

Here, P (M0) ∈ (0, 1) is a chosen prior model probability for M0, and BF10(y(n)) the
Bayes factor based on θ ∼ N (0, g) with tuning prior variance g > 0, say, g = 1, where

BF10(yn) = BF10(n, z ; g) = (1 + ng)− 1
2 exp( ngz2

2(1+ng) ), z :=
√

n(ȳ − θ0). (3)

The two issues deal with n → ∞ while keeping z fixed, resulting in P (M0 | z, n) ̸→ 0.

Issue 1: Since P (M0 | z, n) ̸→ 0, the credible interval derived from Eq. (1) will not
converge to the classical confidence interval.

Issue 2: The point mass prohibits the specification of an exact 1 − γ credible interval
for certain γ ∈ (0, 1). The latter can be roughly resolved by defining the 1 − γ credible
interval as the smallest interval that has at least, rather than exactly, 1 − γ posterior
probability. The resulting interval will then be well-defined and in potential only a wee
bit wider.

Both concerns are bypassed with an anytime-valid confidence sequence (Grünwald,
2023; Howard et al., 2020; Ly et al., 2024b; Pawel et al., 2024; Wagenmakers et al.,
2020) that collects all the null values θ0 for which BF10(n, z) ≤ 1/α; for Eq. (3) this
confidence sequence is given by

CS(1 − α) :=
[
ȳ − 1√

n

√
1+ng

ng log( 1+ng
α2 ), ȳ + 1√

n

√
1+ng

ng log( 1+ng
α2 )

]
. (4)

Irrespective of the choice of the prior on θ, CS(1−α) will be well-defined for all α ∈ (0, 1)
and n ∈ N, thus solving Issue 2.
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2 Anytime-valid confidence sequences: A Bayes/frequentist compromise
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Figure 1: Left panel: Due to the Bernstein-von Mises theorem, the standard (not model-
averaged) 95% credible interval (yellow, appearing orange due to the overlap) and the
95% classical confidence interval (red) converge to each other. Both do not cover the
true data generating θ = 2 at all times with 95% chance, whereas a 95% anytime-valid
confidence sequence (blue) does. Right panel: The 95% CS(1−α) interval width expands
as g ↓ 0 and g ↑ ∞, whereas the standard 95% credible interval width asymptotes to the
95% classical confidence interval width as g ↑ ∞. Figures plotted with the safestats
package (Ly et al., 2024b) in R.

CS(1−α) also circumvents Issue 1, as it will cover the data-governing θ with at least
1 − α chance regardless of when, or whether data collection is stopped. In fact, without
over-inflating the type I error α, we can reject M0 and halt data collection at the first
data-driven time τ at which θ0 falls outside CS(1 − α). In contrast, the same procedure
with a classical confidence interval Conf(1 − γ) will lead to a type I error converging to
one because Conf(1 − γ) has a width of O( 1√

n
). The law of iterated logarithm requires

a sequentially safe interval width of at least O( 1√
n log log(n)

). Hence, from a sequential
analysis point of view it is undesirable for interval estimates to align with classical
confidence intervals. In other words, Issue 1 becomes irrelevant; Fig. 1 illustrates the
advantage of CS(1 − α) being different from Conf(1 − γ).

The time-uniform coverage guarantee is due to BF10(n, z) being a so-called E-process
(Grünwald et al., 2024; Ramdas et al., 2023), that is, a non-negative stochastic process
S for which the following holds:

For all P ∈ M0 and any stopping time τ : EP[Sτ ] ≤ 1. (5)

This defining property suffices for Ville’s inequality to hold, which states that

For any P ∈ M0,P(For all n : Sn ≤ 1/α) ≥ 1 − α. (6)

Lemma 3 in Howard et al. (2020) shows that Eq. (6) still holds if n is replaced by a
stopping time τ . It is worth noting that not all E-processes are Bayes factors and that
not all Bayes factors are E-processes (e.g. Ly et al., 2024a). In case a Bayes factor is an
E-process, Eq. (6) implies that for interval estimates it might be better to invert such
a Bayes factor instead of using it to update prior model probability as in Eq. (1) (e.g.
Grünwald, 2022).
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